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ABSTRACT 

We characterize the isometries from C(X) into C(Y) where X and Y are 
compact metric spaces. We give necessary and sufficient conditions on an 
isometry from a subset of C(X) into C(Y) to have an extension to the whole 
space. It is also shown that an almost isometry from the unit ball of C(X) into 
the unit ball of C(Y) is near to an isometry. 

Introduction 

A well-known theorem in the theory of Banach spaces states that an isometry 

of one normed (real-linear) space onto another which carries 0 to 0 is linear. The 

proof is due to Mazur and Ulam and can be found in Banach's book [2]. 

In this paper we restrict ourselves to the Banach space C(K) where K will 

denote a compact metric space. 

In Section 1 we describe the isometries F: C(X) ~.to C(Y) and prove that 

there is a subset K C Y such that the map f---~ F(f)tK is a linear isometry. This 

section also contains an extension theorem for isometries from subsets of C(X) 
into C(Y). 

In Section 2 we deal with the following question: When is an almost isometry 

from the unit ball of one Banach space into the unit ball of another near to an 

exact isometry? It will be proved that for C(K)-spaces this question has a 

positive answer. 

For linear maps a positive answer has been obtained for C(K)-spaces by 

Benyamini [3] and for Lp-spaces by AIspach [1]. 
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1. Isometries from C(X) into C(Y) 

Let X and Y be compact nietric spaces with metrics d~ and d2. We let B(z ,  r) 

denote the ball with center z and radius r. 

THEOREM 1.1. Let F: C(X)---~ C ( Y )  be an isometry with F(O) = O. Then there 

exists a subset K C Y such that the mapf---~ F(f)IK is a linear isometry where 

F( f )  Ir denotes the restriction of F( f )  to K. 

THEOREM 1.2. Let F: C(X)--* C ( Y )  be an isometry with F(O) = O. Then there 

exists a linear projection P: C( Y)---~ C( Y )  such that Po F is a linear isometry of 

C ( X )  into C ( Y ) .  

For Vx ~ X we define fx E C ( X )  by: 

d,(x, r) 
fx (r) = 1 - diam(X) ' r E X 

and we define A~ to be the set of y E Y for which 

IF(f~)(y)[ = 1 

and 

F(tf~)(y) = tF(fx)(y)  for Vt E R. 

In order to prove Theorems 1.1 and 1.2 and for use later on we prove the 

following lemmas; 

LE~IMA 1.1. The set Ax is nonempty for Vx  E X. 

LEMMA 1.2. For every g E C(X)  and every y E Ax we have 

F ( g ) ( y )  = g(x )F( f , ) ( y ) .  

LEMMA 1.3. U x ~ x A ,  is closed. 

PROOF OF LEMMA 1.1. Let x E X. For each 0 < s < o0 let 

Y, = {y E Y: I F(s fx)(y)  - F( - s/x)(y)} = 2s}. 

If t < s  then Y, CY,.  

To prove this let y E Y, and assume without loss of generality that F(sfx) (y)  = 

s. Then s - t = II F(sfx) - F(tfx)ll >-- I s - F(tf.,)(y)! which implies that F(t fx)(y)  => 

t. Similarly F ( -  tfx)(y)_- < - t. Hence F( +- t f , )= +- t and y E Y,. 

As each Y~ is closed and non-empty Os>o Y, = A,  is closed and non-empty. 
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PROOF OF LEMMA 1.2. Let y E A~. Without loss of generality we assume that 

F(fx)(y)  = 1. By continuity of F we can assume that g is constant in a small 

neighbourhoodof x, say g -  c on B(x, 6). 
Let 

diam(X) t >(Icl+llgll) 6 

Then for x'ff: B(x, 6) we have 

- t+c<= g<x)=t[x<x')-g(x')<=t ( Ic l+] lg l l )d(x 'x ' ) -g(x  ') 6 

_-< t - p c  1 - I l g l l -  g(x')<= t -  c 

and for x' ~ B(x, 6) we have tfx ( x ' ) -  c <= t - c where equality is attained for 

X~=X. 

Hence II g - tfx II = t - c. S i m i l a r l y  II g + tfx II = t + c. 

It follows that I F ( g ) ( y )  - t I -< t - c and / F ( g ) ( y )  + t l --< t + c. Thus F ( g ) ( y )  = 

c and the proof is complete. 

PROOF OF LEMMA 1.3. Let {y. } be any sequence in I,.J Ax with y. E A x. and 

lim y° = y. Since X is sequentially compact the sequence {x, } has a convergent 

subseq uence, say x, --~ x. By Lemma 1.2 we have F ( C  ) (Y-) = tf~ (x,)F(fxo) (y,). 

If we let t = 1 and observe that fx(x.)---~ 1 and F(t~)(y,)--*F(fx)(y) it follows 

that lim F(f~.)(y,) exists and is equal to F(fx)(y).  

Hence F(tfx)(y)= limF(tf~)(y.)-~ tF([x)(y) and since lF(f~)(y)[ = 1 we have 

proved that y E Ax. 

PROOF OF THEOREM 1.1. Let K = I,.J Ax. By Lemma 1.2 we have for y E A~ 

F(f + g)(y)-= (f(x)+ g(x))F(f~)(y) = F ( f ) ( y )  + F(g) (y) .  

Hence the mapf--~ Fir)l,, is linear. Furthermore we have 

l/F(/')/,, II-- sup I]'(x)l =sup  If(x)l =llfll by Lemma 1.1. 
x E X  x E X  

Thus we have proved Theorem 1.1. 

PROOF OF THEOREM 1.2. Let K = I,_J~xA~ and let R:  C(Y)---~C(K) be the 

restriction mapf----~f IK. Since by Lemma 1.1 and Lemma 1.3 K is a closed 

nonempty subspace of the metric space Y there exist a linear operator  

A: C(K)---~ C(Y)  with Ilmll = 1 and such that A(f)IK = f  ([5] p, 365, Theorem 
21.1.4). 
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Let P = A o R. Clearly P is linear and since R o A is the identity map of C(K) 
we have p2 = Ao R o A R  = Ao R = P. Hence P is a projection. By Theorem 1.1 

R o F is linear and since A is linear clearly P o F is linear. Furthermore,  since 

Ilmll-- 1 and by theorem 1.1 we obtain 

I[eo F(f) l l  = II A (F( f )  [,()11--< [IF(f)l  II = I[f It, 

Ii p o F(f) l l  >= II (po F(f ) )  l K 1] = II F ( f )  I,~ II = Ii f I]- 

Thus PoF: C(X)--* C(Y)  is a linear isometry. 

REMARK. If we let X = {0, 1,½,~,.:.} we have C(X) isometric to c and Co 

isometric to {f ~ C(X) ;  f(0) = 0}. With some modification of the proofs we see 

that Theorems 1.1 and 1.2 are also valid if we insert co instead of C(X) and 

C(Y). 

We will now discuss the complex case. If F: C(X, C)---~ C(  Y, C) is an isometry 

then the map/---* F(f)IK need not be linear for any K C Y. As a matter  of fact, it 

need not even be real-linear, as the following example shows. 

Let  X = [0, 1], Y = [0, 1] x [0,2rr] and let P8 be the orthogonal projection 

onto the half-plane, 0 - rr =< arg z <= O, i.e. 

f z  if 0 -  7 r -  arg z =< 0, 

e'° i z i cos(arg z - 0) otherwise. 

Given f E C(X, C) we define F(f) on Y by F(f)(x, O) = Po (f(x)). Clearly F is an 

isometry. 

For 0 fixed and f ~  e "°÷~/2) we see that F(f)(x,O)=O and F ( -  f)(x, O)= 
- e  "°+'m). Hence the map f---~ F(g){l~,.o~l is not linear for any point (x, 0) in Y. 

However ,  there is a weaker  version of Lemma  1.2; for the complex case: 

Let  fx.o = e'°f, and let A,.o = {y E Y; ]F(sf~.o)(y)- F ( -  sfx.o)(y)[ = 2s Vs > 
0}. Then for any g E C ( X , C )  with argg(x)=O we have F ( g ) ( y ) =  

}g(x)l F(fx.o)(y) Vy E A~.o. 

In the next theorem we let M be a subset of C(X) and F: M---~ C(Y)  an 

isometry with F(0) --- 0. For g E C(X) we define a(g, y), b(g, y) on Y by 

a(g, y) = sup {f ( f ) (y ) -  I l l -  gll}, 
[~M 

b(g, y) = inf {F(f)(y)+l]f - gll}- 
f ~ M  

Then we have the following. 
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THEOREM 1.3. There exists an isometry G: C(X)---~ C(Y)  with G ]M = F if 

and only if 
(i) For every x E Y there exists a non-empty set Ax such that the Ax's are 

pairwise disjoint, U x~x A, is closed and the map A: U A.  --~ X, where A ( y ) =  x 

for y E A,,  is continuous. 
(ii) There exists continuous function s: U A, --~{ - 1, 1} such that 

F ( f ) ( y ) = s ( y ) f ( x )  f o r a l l y E A x  and f ~ M .  

(iii) For every g ~ C(X)  we have 

lim a(g, y) <= !im b(g, y) V y o ~ Y  
y ~ y o  y ~ y o  

and 

lim a(g, y)=< s(yo)g(x) <- lim b(g, y) 
y ~ y o  y ~ y o  

VyoE Ax. 

PROOF OF THEOREM 1.3. The "only if" part. Let G be an extension of F and 

let Ax, fx be as in the beginning of Section 1. 
If y E Ax and xl ~ x then by Lemma 1.2. 

I G(h , ) (y ) l  = th,(x)G(fx)(y)l = lfx,(x)I < 1 

so y ~  A. , .  

To prove that A is continuous, let Yo ~ A ~,, and let g(x) -- d~(xo, x). Then given 
e > 0  there is a 8 > 0  such that for y E B ( y o , ~ ) O  U A ,  we have 

e > I G ( g ) ( y ) -  G(g)(yo)l = I d,(xo, A(y))- G(f,,y,)(y)l = d,(A (yo), A (y)). 

This together with Lemmas 1.1 and 1.3 shows that condition (i) is fulfilled. 
Now, let g---1 on X and let s ( y ) =  G(g) (y) .  By Lemma 1.2 we have for 

y ~ A . , f E M  

s ( y ) =  G(fx)(y)  = -+1 and F ( f ) ( y ) =  G ( f ) ( y ) = f ( x ) s ( y )  

and (ii) is proved. 

For every e .> 0 we can find f~, f2 E M such that 

a(g, y ) <  F ( f , ) ( y ) -  I ] f , -  g [] + e 

_<- F ( f , ) ( y ) -  G ( f , ) ( y ) +  G ( g ) ( y ) +  

= G ( g ) ( y ) +  
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and 

b(g, y ) >  F(f2)(y)+ [[fz- gll- e >- G(g)(y)- s. 

Thus limy~yo a(g, y)<_- G(g)(yo) <= lirnyoyo b(g, y) and since G(g) (y )  = s (y)g(x) 

for y E A, we see that condition (iii) is satisfied. 

The " i f "  part. We first consider the case when X C Y, A, = {x}, s -= 1 and 

prove the following: 

(a) Let N be a subset of C(X) containing M. If (iii) is satisfied for all g E U 

then there exists an isometrical extension of F to N. 

For g E N we define A(g, y), B(g, y) on Y by 

n(g, y) = I g(x)' 
X E x ,  

(l ira a(g ,y) ,  otherwise; 

I g(x) ,  x ~ X ,  

B(g ,y)  = ( l i m b ( g , y ) ,  otherwise. 

Since lim a(g, y) is upper semi-continuous (s.c.), X is closed, g(x) is continuous 

and limy~xa(g,y)<-g(x) on X, we have that A ( g , y )  is upper s.c. 

Similarly, since lira b(g, y) is lower s.c. and g(x) <=limy~x b(g, y) on X, B(g, y) 
is lower s.c. 

Let h be any fixed function in N and choose ~b E C(Y) satisfying A(h, y)<-_ 
0(y)_-  < B(h, y) for all y E Y (this is possible since A(h, y) (upper s .c .)_ --< B(h, y) 

(lower s.c.), [5]). 
Let M~ = M (3 {h}, F(h)= ~b and define 

a , (g ,y)  = sup {F(f)(y)-llf-gl]}, bl(g,y) = inf {F(f)(y)+rjf-gl]}. 
feral  [EMI 

We will now prove the following: 

(b) The m a p F :  Mz--~" C(Y) is an isometry and for Ax = {x}, s = 1 condition 

(ii), (iii) is satisfied for all g ~ N. 

Once (b) is proved (a) follows by iterating the procedure with a dense sequence 

{h,} in N. 

In order to prove (b) we first show that a(g, yo)<=iimr~yoa(g, y) and 

limr~,,b(g, y ) =  b(g, Y0) for all y E Y and g ~ C(X). 
Given e > 0 we can find f ~ M such that a(g, yo)< F ( f ) ( y o ) - l l f - g  I[ + 
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and 8 > 0 such that  IF(f)(y)  - F( f ) (yo) l  < e /2  for  all y ~ B (Yo, 8). It  follows that  

a (g, yo) < F(f ) (y)  -II f - g tl + F(f ) (yo)  - F(f) (y)  

< F ( f ) ( y ) - I l l  - g II + 

=< a ( g , y ) +  e on B(yo, 8). 

Thus  a(g, yo) = iimy~yo a(g, y). Similarly we get lirny~yo b(g, y)  = b(g, yo). 

Le t  f E M .  For  y o E  Y \ X  we have  

F( f ) (yo)  - 6(yo) =< F( f ) (yo)  - lim a(h, y)  =< F( f ) (yo)  - a(h, yo) =< llf - h tl 
y ~ y o  

and 

O(yo) - F ( / ) (yo )  =< lim b(h, y)  - F(f)(yo) <= b(h, yo) - F ( / ) (yo )  _-< tlf - h II. 
y~yo 

For  x E X we have  by definit ion ~ ( x )  = h(x)  and by condi t ion (ii) F(f) (x)  = 
f(x).  H e n c e  1IF(f)-  ~bll = IIf - h tl for  all f E M. 

It  remains  to p rove  that  condi t ion (iii) is satisfied for  all g E N. Clear ly  

l i m a  ~(g, y)  = sup{lim a (g, y), ~ , ( y ) - I I  h - g II} 

and 

lim bl(g, y) = inf{lim b(g, y), ~ ( y ) +  II h - g II}. 

Now,  for  g E N and x E X we have 

lim a (g, y )  _<- g(x) <= lim b(g, y). 
y ~ x  y ~ x  

Thus  we have  

and 

iim a,(a, y)  =< sup{g(x) ,  h(x ) - i l  h - g It} = g(x) 
y ~ x  

lim b,(g, y)  => inf{g(x),  h(x)  + II h - glt} = g(x). 
y ~ x  

For  y E Y \  X we need to p rove  

l ima,(g ,y)<-_6(y)+}lh-gl l  and ~(y)-IIh-gll<-_-l imb,(g,y) .  
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Given e > 0 we can find f @ M such that  

a(g, y ) -  a(h, y)=< F ( f ) ( y ) - I l l  - g[I + e - a(h, y) 

=< F ( f ) ( y ) - [ I f -  g II + e - f ( f ) ( y )  + [ I f -  h I1 

--<llg-hlJ+~. 
Hence 

Similarly 

lim(a (g, y ) -  a(h, y ) )  < I[h - g l l .  

Therefore  we have 

lim(b (h, y) - b(g, y)) =< II h - g ]l. 

l i m a  (g, y ) - ~b(y) <_- l i m a  (g, y ) - lira a (h, y ) <_- lim(a (g, y)  - a (h, y )) <_- Ii h - g I} 

and 

tk(y) - l i m  b(g, y) -< lira b(h, y ) -  lim b(g, y)  <= lim(b (h, y) - b(g, y)) -<_ I1 h - g [I- 

Thus condit ion (iii) is satisfied. 

This proves (b) and so the proof of (a) is complete. 

We will now use (a) to prove the general thoerem.  Let  U A~ = Z C Y. By 

condit ion (i) we can define a linear isometry L :  C(X)---~ C(Z)  by L ( f ) ( z ) =  
s ( z ) f (x )  for z E Ax. 

Now let FI: L(M)---~ C ( Y )  be defined by F~(L(f))= F(f). Clearly F~ is an 

isometry satisfying condit ion (i), (ii) with Az ={z} and s -  1. Moreover ,  

condit ion (iii) is satisfied for all h E L(C(X)) .  
To see this, let h = L(g). Then we have 

sup {Fl(L(f))(y)-I[L(f)-  L(g) l l }  = a(g, y) 
L(f)EL(M) 

and 

inf {F~(L(f))(y)- l lL(f)-  L(g)ll} = b(g, y). 
L(f)~L(M) 

For z ~ A ,  and g ~ C(X)  we have 

lim a(g, y)_-< s(z)g(x)  = L(g)(z)<~lim b(g, y). 
y ~ z  y ~ z  
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Hence condition (iii) is satisfied for all h E L(C(X)) and with s ~ 1. Thus we can 

find an isometrical extension P~ of F, to L(C(X)). Clearly i~ o L is an isometrical 

extension of F to C(X) and the proof of Theorem 1.3 is complete. 

REMARK 1. One can easily see that the general case can be carried out 

directly in almost the same way as we carried out (a) by defining 

s(y)g(x), y @ Ax 
A(g, y) = 

l ima(g ,y ) ,  otherwise 

and similarly for B(g, y). However  the structure of the general isometry may 

appear in a more clear way when carrying out (a) first. 

REMARK 2. If we let co replace C(X) and C(Y)  in Theorem 1.3 and exclude 

the requirement of s to be continuous we have an extension theorem for 

isometries from subsets of c,,. In the proof we then let Ao = {0} and s(0) = 1. In 

this case we have 

lim a(g, y) = a(g, y,,)_--- b(g, yo) = lim b(g, y) 
y~yo y~YO 

for all yo ,-~ 0 

and since a (g, y ) ~  s (y)g(yo)=< b (g, y,,)for y,, E Ax the condition (iii) reduces to: 

For all g E C(X) we have l i m a  (g, y) =< 0 =< li m b (g, y). 
y~O y~.O 

2. Almost isometries from the unit ball of C(X) into the unit ball of C(Y)  

Let X, Y be compact metric spaces with metrics dl and d2 and let BR (C(X))  

denote the ball in C(K) with center 0 and radius R. 

THEOREM 2.1. Let F: B~(C(X))--~ Bz(C(Y)) with F ( 0 ) = 0  and 

(1-e) l l f  -g[l<=llF(f)- F(g)ll<--(l +e)llf -gl] for all f, gEB,(C(X)).  

Then there exists an isometry G: B t ~,cF)(C(X))--> Bj(C(Y)) such that 

I] Off ) -  F(f)H < ~2(e) o n  B,_~,,,)(C(X)) 

where 3,(e )--)O and 62(e )--->O when e---~O. 

The proof is based on the following Proposition. Let a be fixed, 16e/(1 + 8 ) <  

a=<l .  



152 G.-M. LOVBLOM Isr. J. Math. 

PROPOSITION. There is a closed set K C Y, a continuous onto map c~ : K ~ X 

and a continuous sign [unction s: K --) { - 1, 1} with the following property : 

I[ [~, [2 E B~-a/2( C ( X ) )  and l i f l -  [211 = I [t(Xo) - [2(Xo)l then there is yo E ~b-~(x0) 
so that 

[F (~ ) (y0 ) -  (1 + e)s(yo)f~(xo)l =<3e, i = 1,2. 

DEFINITION 1. Given xo E X we say that [ ~ C ( X )  is a tentfunction at Xo if 

for some 8 > 0  

1 -.dl(xo, x) 
f ( x )  = 6 ' 

O, 

x ~ B(xo, ~), 

otherwise. 

For the proof of the Proposition we need some lemmas. 

LEMMA 2.1'. Let {[.} C C(X),  {x,} C X, {y.} C Ybe  sequences with y. ~ y and 

[. a tent[unction at x. with supp(L ) = B(x . ,  6.) where 6.---~0 when n---~oo. I f[or 

all n 

(I) 2a(1 + e ) - 4 e  _-< t F ( a [ . ) ( y . ) - F ( -  a[ . ) (y . ) l  

then lim,_~ x, exists. 

DEFINITION 2. We say that y E Ax if there exist sequences {f,}, {x,}, {y,} 

satisfying the conditions in Lemma 2.1 with x = lim x, and y = lim y,. 

PROOF OF LEMMA 2.1. Clearly {x,} contains a convergent subsequence, say 

{x,,}, with iimx., = x. Assume that {x.} is not convergent. Then for some d > 0  

there exist, for every N, n>-_N such that d~(x,,x)>_-d. Let g E C ( X )  with 

0 <- g <-a/2, g =-a/2 on B(x,  d/4) and with supp(g)C B(x,  d/2). 

Now, for every N it is possible to find n, n ' =  > N such that supp(f,,)C B(x, d/4) 

and supp(f.)  A B(x,  d/2) = ~ .  Then we have IIg - af,,ll = a/2, IIg + af,'ll = 3a/2 

and II g +- of. II-- a. 
Therefore  we get 

F(a[~,)(y.,)- 2 (1 + e ) -  < _ F(g)(y. , )  = < F(a[~,)(y.,)+ 2 (1 + e), 

F ( -  (1 + F(g)(y. ,)  <- V ( -  + (1 + e), 

F ( -  a f ~ ) ( y . ) -  a(1 + e ) <  F ( g ) ( y . )  = < F(  + - a f . ) (y . )  + a(1 + e). 
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By hypothesis of F and by (I) we have for all k 

a(1 + e ) - 4 e  - F(afk)(yk)<= a(1 + e), 

-- a(1 + e ) - -  F ( -  afk)(y~)=< - a(1 + e ) + 4 e ,  

o r  

We obtain that 

- - 4 e  

and 

Thus we have 

- a(1 + e) =< F(afk)(yk) <- -- a(1 + e) +4e,  

a(1 + e)-4e < F ( -  afk)(yk) ~ a(1 + e). 

+ a F (g ) (y , )=<(+  a ( l + e ) + 4 e  ( - )  2 (1 + e)-<- - ) 2  

- 4 e  <= F(g)(y,)<=4e. 

]F(g) (y , , ) I>-_2( l+e) -4e  and ] F ( g ) ( y , ) l < 4 e .  

Since F ( g ) ~  C ( Y ) ,  16e/(1 + e ) <  a fixed and d2(y,,, y,)--~ 0 when n, n'--->oo this 

clearly gives a contradiction for n, n' large enough. Hence {x, } is convergent. 

As a consequence of Lemma 2.1 we have the following. 

LEMMA 2.2. The sets A~ are pairwise disjoint. 

PROOF. Let y E A~, N Ax2 and let {f~,}, {x~,} and {y,,} be corresponding 

sequences in the definition of A x,, i = 1,2. Since lim yl. = lim y2, the sequences 

{i l l ,  f21, ft2, f22 . . . .  }, {xl,, x21, xl2 . . . .  } and {y. ,  y2t, yt2 . . . .  } clearly satisfy the condi- 
tions in Lemma 2.1. Hence {Xll,X2~,X12 . . . .  } is convergent and xl = l imx, ,  = 

lim x2, = x2. 

LEMMA 2.3. If yk E A x~ and yk --~ y then XE ~ X and y E A~. 

PROOF. Let {/~.}, {xk.} and {yk,} correspond to y~ in the definition of A x~. For 

every k we can find n(k)  such that dl(xk.(k), Xk)< 1/k, dz(yk.~k), y , ) <  1/k and 

supp(/k.(k)) C B(xk, 1/k ). 

Then the sequences {/k,(k)}, {Xk,(k)} and {yk,(k)} clearly satisfy the conditions in 

Lemma 2.1. 

Thus 3 limk_~ Xk.(k) = X and l imk~ yk,~) = y E A~. 
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LEMMA 2.4. 

sequences satisfying the conditions in Lemma 2.1. Then 

• (a t lim sign F(af.)(y.) = sign F ~ (y). 

PROOF. For each y. we have s ign(a / . ) (y . )=s ign(a /2 ) (y . )  
[F(a/2)(y.)l > 4e. Indeed, by definition we have 

[F(af.)(y.)l _->2(1 + e)a - 4 e  - I F ( -  af,,)(y.)] => (1 + e)a - 4 e  

and 

Hence 

Similarly, 

G.-M. LOVBLOM lsr. J. Math. 

Let y E Ax and let {L}, {x.} and {y.} be any collection of 

a <  a a 
F(a[.)(y.) - (1 + e) 5 = F (5)  (y") =< F(a[.)(y. ) + (1 + e) 2"  

if F(af~)(y.)>O. 
a 

F (y.)=>_(1 + e ) 5 - 4 e  > 4 e  

and 

and 

F ( 2 )  ( y . ) <  - 4 e  ifF(af.)(y.)<O. 

Thus sign F(a/2)(y) is well-defined and equal to l im .~s ign  F(af.)(y.). 

PROOF OF PROPOSITION. Let K = [ J  Ax, s(y)  = signF(a/2)(y) on K and let 

4): K---~X be defined by 4~(y) = x for y EA~.  By Lemmas 2.2 and 2.3 we see 

that K is closed and s, 4~ is well-defined and continuous. 

Let fl, f2 @ B,_./2(C(X)) and let Hf, - f2]] = [f ,(xo)- f2(xo)]. In order to prove 
that there is a yo G K w i t h  4 ~ ( y o ) =  Xo and 

I FO~)(Yo) - (1 + e)s(yo))~ (Xo)! =< 3e 

we construct two sequences of functions in the following way. 

Let d be such that ]/~ (x) - ~ (x0)[ =< a on B (Xo, d). For n = 1, 2, 3 . . . .  we define 

1 - na&(x, Xo) d ° n B ( x ° ' d )  

p . ( x )  = 

min {1 - / ,  (x0) + ~ (x), 1 - a} otherwise 
i=1,2 
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q . ( x )  : 

nadl(x,  x,,) 
- 1 +  d ° n B ( x ° ' d )  

m a x  { - 1 - f; (Xo) + 1~ (x) ,  - 1 + a} o t h e r w i s e .  

C lea r ly ,  p., q. E B f f C ( X ) )  a n d  we  h a v e  

(*) Ilf,-p. ll~l-[,(Xo) a n d  Ilf,-q. ll~l+f,(Xo) whenn- - -~oo .  

B y  c o n t i n u i t y  this is o b v i o u s  on  B(xo, d /n ) .  F o r  x ~ B ( x ° , d / n )  we h a v e  

p, (x )  - f , ( x )  ~ 1 - fdxo)  and  if p,, (x )  = 1 - fl(xo) + ( f i x )  t hen  

f , ( x ) - p . ( x )  = - 1 + fl(xo)<= f(xo) - 1. 

If  iv. (x )  = 1 - a t hen  

f l ( x ) - p . ( x ) < =  1 -  a / 2 - ( 1 -  a ) =  1 - ( 1 - 2 ) = < l - f , ( x o  ), 

F inal ly ,  if p .  (x )  = 1 - f d x . )  + f2(x) t hen  f d x )  - [, ( x )  <= f2(xo) - f, (xo). Since  

] f l(x ) -  f d x  )l <--[f,(xo)-f2(Xo)[ 

this  impl i e s  

f2(x)-f,(x)=f2(xo)-f,(xo)<O o r  h(x)-fdx)<=f2(xo)-f,(x,,). 

H e n c e  f t ( x )  - p. ( x )  = f t ( x o ) -  1 <= 1 - ft(xo) o r  

f , ( x )  - p. (x )  = f , ( x )  - f2(x)  - 1 + f~(x,,)_<- - 1 + 2/z(x,,) - f , (x . )  =< 1 - f,(xo). 

T h u s  we  h a v e  I p . ( x ) -  f , (x)[  <= 1 - f(xo) on  X \ B ( x o ,  d /n ) .  

Simi la r ly ,  I q. (x )  - f ,  (x)]  ~ 1 + f(xo) on  X \ B (Xo, d / n ). 

S ince  lip. - q .  ]] = 2 t he r e  exis t  y. for  e v e r y  n such  tha t  

(**) 2(1 - e )  =< [ F(p. ) ( y .  ) - F(q. ) ( y .  )1 _-< 2(1 + e ) .  

T h e  s e q u e n c e  {y. } c on t a i n s  a c o n v e r g e n t  s u b s e q u e n c e ,  say  y.  ~ y,,. W e  shal l  n o w  

p r o v e  t ha t  y0 E A ~,, = 4, ~(Xo). 

C o n s i d e r  the  f u n c t i o n s  r. de f ined  b y  

10 rldl(x, Xo) r. (x )  = - d on  B ( x o ,  d ) ,  

o t h e r w i s e .  
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Since rn is a tentfunct ion at Xo, d/n ---~0 and yn --~ yo we have y o E  ~b-l(Xo) if we 

can prove that 2a(1 + 8 ) - ] F ( a r . ) ( y . ) -  F ( -  ar.)(y.)l  <-_48. 

Assume that  F(p.)(y.)>=F(q.)(y~). From (**) we obtain 2 ( 1 - 8 ) _  <- 

F(p , , ) ( y . ) -F (qn ) ( y . )  and since liP. - at. ]1 = []q. + at. 11 = 1 - a we get 

- I F ( a r . ) ( y . ) -  F ( -  ar.)(y.)[ <- F ( -  a r . ) ( y . ) -  F(ar . ) (y . )  

-<_ F ( -  a r ~ ) ( y ° ) -  F (q . ) (y~)  + F ( p . ) ( y . )  

- F(a.r~)(y.)+ F ( q ~ ) ( y . ) -  F(p~) (y . )  

_-< (1 + e)(1 - a ) +  (1 + 8 ) ( 1 -  a ) - 2 ( 1  + 8) 

= - 2 a ( 1  + 8 ) + 4 8 .  

Thus  yo E ~b-l(xo). 

T h e  case F (p~) (y . )  < F ( q . ) ( y . )  is p roved  similarly. Since IF(p . ) (y~) l  _-< 1 and 

IF (q . ) (y . ) l  _-< 1, (**) implies 

1 - 2 8  < F ( p . ) ( y . )  < 1, 

- 1<= F ( q . ) ( y . )  < - 1 + 2 t ,  

o r  

- 1 < F ( p . ) ( y . )  < - 1 + 2 e ,  

1 - 2 e  _-< F ( q . ) ( y . ) - <  1. 

One  can easily check that sign F(p. ) (y . )  = sign F(ar. ) (y . )  so for n large enough  

we have sign F(p. ) (y . )  = s(yo). Hence  for n large enough  those inequalit ies can 

be rewri t ten in the form 

1 - 2 e  < s(yo)F(p.)(y.)  < 1, 

- 1 < s(yo)F(q.)(y.)<= - 1 +28. 

From (*) we obtain 

- e(n, f ,)+ F ( p . ) ( y . ) - ( 1  + e) (1  - f~ (Xo)) < F(f~)(y. )  

_-<(1 + 8)(1 - f, (Xo)) + F ( p . ) ( y . )  + 8 (n, f~), 

- 8(n, f~)+ F ( q . ) ( y . ) -  (1 + 8)(1 +f~ (Xo)) < F(f~) (y . )  

< (1 + 8)(1 +f~ (Xo)) + F ( q ° ) ( y . )  + 8 (n, f~), 

where  e(n,f~)--~0 when n--~oo. 
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Hence for n large enough we have 

- e(n,f~)-3e +(1 + e)s(y,,)f~(xo)=< F(~)(y.)=< (1 + e)s(y~0f~ (xo)+3e + e(n,f~). 

Letting n .-~o0 we obtain I F(/~)(y,,)- (1 + e)s(yo))~ (Xo)l =< 3e and the proof is 

complete. 

PROOF OF THEOREM 2.1. Let & and s be as in the Proposition. Since 

s: K-- ,{  - 1, 1} and K is closed we can find, by Urysohn's lemma, a continuous 

function g: Y - - , [ -  1, 1] with g [K = S. 

NOW, let M~(X) be the unit ball of Radon measures on X endowed with the 
weak*-topology. Define a set valued map on Y by 

$ (y )  = {s(y)cS,(yj} if y E K 

and 

qs(y) = {g(y)/x ;/x probability measure E M~(X)} if y ~ Y\  K. 

Clearly $ (y )  is a closed and convex subset of Mn(X) for all y E X. Furthermore, 

one can easily check that the set {y ~ Y; tk (y)n  G / 0 }  is open in Y for every 

open set G in M~(X). Hence, using Michael's selection theorem ([4] p. 169) we 
can find a continuous map q~: Y---~M~(X) such that ~ ( y ) =  s(y)6,~y~ on K. 

Now given any y E Y and f ~ B~_,,/z(C(K)) we define 

/ / 1 
G ( f ) ( y )  = sup (inf tq~(y)(f) ~ (F( f ) (y )  ~ (F( f ) (y) -  

We observe that IF(f)(y)-(l+e)g,(y)(f)l=<3e if and only if G ( f ) ( y ) =  

Since q~ is weak*-continuous we have ~o(y)(f) continuous on Y and hence 

G(f) E C(Y). 
Furthermore we have 

] F ( f ) ( y ) -  G( f ) (y ) l  = [ F ( / ) (y ) -q~(Y) ( f ) l  

<= I F( f ) ( y ) -  (1 + e)~o(y)(f) I + e 19(Y)(f)l 

or  

=<4e 

I 1 

] F ( f ) ( y ) -  G( f ) (y ) l  = ] F ( g ) ( y ) - l ~ e  (F(f)(y)_+ 3e)  

< 1 ( [ e F ( f ) ( y ) l + 3 e )  
= l + a  

=<48. 
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Thus [ IF( f ) -  G(f)] [ =<4e on B~-on(C(X)). 
We now prove that G is an isometry and to do this we first show that 

[G(f,)(y)-G(f2)(y)]~llf,-f2H Vy E Y. 

This clearly holds if G( l~)(y)= ~(y)(f~), i = 1,2 or 

1 ( F ( f , ) ( y ) -  3e) i = 1 , 2 .  
= ( + )  , 

If 

1 1 
G(fl)(y)=l~--~e (F(f~)(y)-3e) and G(fz)(y)=f-+-ee (F(f2)(y)+3e) 

then by definition 

G ( / , ) ( y ) =  > ~(y)(f , )  and G(/2)(y)_- < ~(y)(/2). 

Hence G ( f 2 ) ( y ) -  G(f , ) (y)  -< ~p(y) (f2 - f , )  ~ []f~ - f2][ and 

1 
G(f, (y)  - O(f:)  (y) = ~ (F(f , ) (y)  - F(f : ) (y)  - 6~) <= I]f, - f:ll- 

If 

then 

1 
G(f , ) (y)  = ~(y)(f , )  and G ( / 2 ) ( y ) = ~  ( F ( f 2 ) ( y ) - 3 e )  

G ( f , ) ( y ) -  G(g2)(y) =< ¢ ( y ) ( f , ) -  ~(y)(f2). 

Furthermore, we have 

(1 + e)q~(y)(f,) - 3e -<__ F(f t)(y)  ------ (1 + e)q~(y)(f,) + 3e 

and 

F ( f , ) ( y ) -  (1 + e)llf, - f211 <= F(f2)(y) -- F(fl) (y) + (1 + e)l t  f ,  - f d t .  

Using the right side of those inequalities we get 

1 
1 + e (F(f2) (y) - 3e) - q~(y) (f,) ----% Hf, -/2[[. 

Finally, if we use the left side we obtain a proof for the remaining case, 

1 
G ( f l ) ( y ) =  ~o(y)(ft) and G ( f 2 ) ( y ) = ~  (F(f2) (y)+3e) .  
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Hence II G ( f l ) -  G(f2)fl--< II]',- f211. 
Now if Ilfl-f=ll = I f l ( x o ) - f 2 ( X o ) l  , then by the Proposition we can find a point 

y. E ~b-~(x0) such that 

3e => [F(~)(yo)-  (1 + e)s(yo)f¢ (x0)[ = I F(f j ) (yo)-  (1 + e)¢(Yo)0~)]. 

Thus G(f~)(yo)= ¢(y,,)(/j)= s(yo)~(xo) so we have 

It G(f,)- G(f=)l[ >=ls(y,,)(f,(xo) - fdXo))l = Ilf, - f=ll. 

Since we may choose a = 16e, &(e) = a/2 and 82(e) = 4e the proof of Theorem 

2.1 is complete. 

REMARK. With some modifications of the proof we see that Theorem 2.1 is 

also valid if we let co replace C(X) and C(Y). 

However, from the proof we cannot draw any conclusion whether Theorem 

2.1 is valid or not in the complex case. For example, we have nothing 

corresponding to the auxiliary functions p,, q. in this case. 
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