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ABSTRACT

We characterize the isometries from C(X) into C(Y) where X and Y are
compact metric spaces. We give necessary and sufficient conditions on an
isometry from a subset of C(X) into C(Y) to have an extension to the whole
space. It is also shown that an almost isometry from the unit ball of C(X) into
the unit ball of C(Y) is near to an isometry.

Introduction

A well-known theorem in the theory of Banach spaces states that an isometry
of one normed (real-linear) space onto another which carries 0 to 0 is linear. The
proof is due to Mazur and Ulam and can be found in Banach’s book [2].

In this paper we restrict ourselves to the Banach space C(K) where K will
denote a compact metric space.

In Section 1 we describe the isometries F: C(X )—ig C(Y) and prove that
there is a subset K C Y such that the map f — F(f) ’K is a linear isometry. This
section also contains an extension theorem for isometries from subsets of C(X)
into C(Y).

In Section 2 we deal with the following question: When is an almost isometry
from the unit ball of one Banach space into the unit ball of another near to an
exact isometry? It will be proved that for C(K)-spaces this question has a
positive answer.

For linear maps a positive answer has been obtained for C(K)-spaces by
Benyamini [3] and for L,-spaces by Alspach [1].
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1. Isometries from C(X) into C(Y)

Let X and Y be compact mietric spaces with metrics d, and d,. We let B(z,r)
denote the ball with center z and radius r.

THeOREM 1.1. Let F: C(X)— C(Y) be an isometry with F(0) = (. Then there
exists a subset K C'Y such that the mapf— F (f)IK is a linear isometry where
F (f)IK denotes the restriction of F(f) to K.

THEOREM 1.2. Let F: C(X)— C(Y) be an isometry with F(0) =0. Then there
exists a linear projection P: C(Y)— C(Y) such that P+ F is a linear isometry of
C(X) into C(Y).

For Vx € X we define f, € C(X) by:

ﬂ(r)=1—£;in’1‘—’(§}), rex

and we define A, to be the set of y € Y for which
[F(f) ()| =1
and
F(f)(y)=1tF(f)(y) forViER

In order to prove Theorems 1.1 and 1.2 and for use later on we prove the
following lemmas;

Lemma 1.1, The set A, is nonempty for Vx € X.
LEmMA 1.2. For every g € C(X) and every y € A, we have

F(g)(y)=g(x)F(f)(y).
Lemma 13. U,ex A, is closed.

Proor orF LEMMA 1.1. Let x € X For each 0 <s < let

Y, ={y € Y: |F(sf)(y)~ F(= sf)(y)| = 2s}.

If t<<s then Y, CY..

To prove this let y € Y, and assume without loss of generality that F(sf,)(y) =
s. Then s — t =||F(sf.)— F(tf.)|| = |s — F(#f.)(y)| which implies that F(tf.)(y)=
t. Similarly F(—tf,)(y)= —t. Hence F(+tf.)=+ttand yE Y,.

As each Y, is closed and non-empty M.~ Y. = A, is closed and non-empty.
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PrROOFOF Lemma 1.2. Let y € A,. Without loss of generality we assume that
F(f.){(y)=1. By continuity of F we can assume that g is constant in a small
neighbourhoodof x, say g =c¢ on B(x, §).

Let

1> (c]+| gl S22X)

Then for x' € B(x, 8) we have
~ 4= - g S () - ()= (| + g ) EEE) - (e

st—|c|-lgll-g(x)=t~-c

and for x' € B(x, 8) we have tf, (x)— ¢ =t — ¢ where equality is attained for
x'=x.

Hence ||g —tf.||=t —c. Similarly g+ tf.|[=t+c.

It follows that | F(g)(y)—t|=t—c and | F(g)(y)+ t| =t +c. Thus F(g)(y) =
¢ and the proof is complete.

PROOF OF LEMMA 1.3. Let {y.} be any sequence in LU A, with y, €A, and
limy, = y. Since X is sequentially compact the sequence {x,} has a convergent
subsequence, say x, — x. By Lemma 1.2 we have F(tf.)(y.) = tf. (x. )F(f..) (y.).
If we let 1 =1 and observe that f, (x,)—1 and F(t.)(y.)— F(f.)(y) it follows
that lim F(f,,)(y.) exists and is equal to F(f.)(y).

Hence F(if, )(y) = lim F(tf.)(y.) = tF(f.)(y) and since | F(f.)(y)| = 1 we have
proved that y € A,.

ProOFOF THEOREM 1.1.  Let K = U A,. By Lemma 1.2 we have for y €A,
E(f+g)(y)=(f(x)+g(x)F(f)(y)= F(f)(y)+ F(g)(y).

Hence the map f — F(f)IK is linear. Furthermore we have

IF() |l = sup [f(x)| =sup|fG)[=Ifll by Lemma 1.1,

Ax #D

Thus we have proved Theorem 1.1,

ProoF oF THEOREM 1.2. Let K = U, cx A, and let R: C(Y)— C(K) be the
restriction map f — f IK. Since by Lemma 1.1 and Lemma 1.3 K is a closed
nonempty subspace of the metric space Y there exist a linear operator
A: C(K)— C(Y) with || Al =1 and such that A(f)|x = f ([5] p, 365, Theorem
21.1.4).



146 G.-M. LOVBLOM Isr. J. Math.

Let P =A°R. Clearly P is linear and since R ° A is the identity map of C(K)
we have P’=A°R°AR =A°R = P. Hence P is a projection. By Theorem 1.1
R F is linear and since A is linear clearly PoF is linear. Furthermore, since
|A]|=1 and by theorem 1.1 we obtain

1P F(H)I=IAEE DI =IEE =11,
iPeFOIZNP FUD Il =IF ) |l =1l

Thus PoF: C(X)— C(Y) is a linear isometry.

ReMArk. If we let X ={0,1,3,5,.:.} we have C(X) isometric to ¢ and co
isometric to {f € C(X); f(0) = 0}. With some modification of the proofs we see
that Theorems 1.1 and 1.2 are also valid if we insert ¢, instead of C(X) and
C(Y).

We will now discuss the complex case. If F: C(X,C)— C(Y,C)is an isometry
then the map f — F(f) I k need not be linear for any K C Y. As a matter of fact, it
need not even be real-linear, as the following example shows.

Let X=[0,1], Y=[0,1]x[0,2%] and let P, be the orthogonal projection
onto the half-plane, 6 — 7 =argz =0, i.e.

z if0—m=argz=40,
Pg =
e”|z|cos(arg z — ) otherwise.

Given f € C(X, C) we define F(f)on Y by F(f)(x, 8) = P,(f(x)). Clearly F is an
isometry.

For 9 fixed and f=¢“"" we see that F(f)(x,0)=0 and F(—f)(x,6)=
— ¢'®* Hence the map f—> F(g) |y is not linear for any point (x,8) in Y.
However, there is a weaker version of Lemma 1.2 for the complex case:

Let f.o=e“f. and let A, ={y EY; |F(sf.0)(y)~ F(— sfs)(y)| =25 Vs>
0}. Then for any g€ C(X,C) with argg(x)=6 we have F(g)(y)=
|8(0)| F(f0)(¥) ¥y € Av.

In the next theorem we let M be a subset of C(X) and F: M— C(Y) an
isometry with F(0)=0. For g € C(X) we define a(g, y), b(g y) on Y by

a(gy)= sup {FHm-lif—gllt,  b(gy) =,ig£{F(f)(y)+llf~ gl

Then we have the following.
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THEOREM 1.3. There exists an isometry G: C(X)— C(Y) with G IM =F if
and only if

(i) For every x € Y there exists a non-empty set A, such that the A,’s are
pairwise disjoint, U, cx A, is closed and the map A: U A, — X, where A(y) = x
fory € A,, is continuous.

(i) There exists continuous function s: \J A, —{—1,1} such that

F()(y)=s(y)f(x) forally€ A, and fEM
(iti) For every g € C(X) we have

lim a(g y)=lim b(gy) V€Y

y—yo y—=yo

and

lim a(gy)=s(y)g(x)=lim b(g,y) Vy €A.

y—=yo y—=yo

PrOOF OF THEOREM 1.3.  The “only if” part. Let G be an extension of F and
let A,, f. be as in the beginning of Section 1.
If y€ A, and x; # x then by Lemma 1.2

|G =1fu()GE) ) = {fu(x) <1

so yZ A,,.
To prove that A is continuous, let y, € A, and let g(x) = d,(x,, x). Then given
£ >0 there is a 8 >0 such that for y € B(y,, 8)NU A, we have

£>|G(g)(y) = G (yo)| = di(x0, A(y))- G(fa)(Y)| = di(A (), A(y))-

This together with Lemmas 1.1 and 1.3 shows that condition (i) is fulfilled.
Now, let g=1 on X and let s(y)= G(g)(y). By Lemma 1.2 we have for
YEA, fEM

s(p)=G(f)y)= =1 and F(f)(y)=G(f)(y)=f(x)s(y)

and (ii} is proved.
For every £.>0 we can find f,, f, € M such that

a(gy)<F(f)(y)-llfi—gl+e
SF(f)(y)-G(f)(y)+ G(g)(y)+e
=G(g)y)t+e
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and

b(g y)>F(f)(y)+lf.—gll-e =2 Gg)(y)—=.

Thus lim,_.,, a(g, )= G(g)(yo) = lim,_.,, b(g y) and since G(g)(y)= s(y)g(x)
for y € A, we see that condition (iii) is satisfied.

The “if”” part. We first consider the case when X C Y, A, ={x}, s=1 and
prove the following:

(a) Let N be a subset of C(X) containing M. If (iii) is satisfied for all g € U
then there exists an isometrical extension of F to N.

For g € N we define A(g,y), B(g.y)on Y by

g(x), xEX,
A(gy)=

lima(g y), otherwise;

g(x), xEX,
B(gy)=

limb(g,y), otherwise.

Since lim a(g, y) is upper semi-continuous (s.c.), X is closed, g(x) is continuous
and lim,_., a(g, y) < g(x) on X, we have that A(g,y) is upper s.c.

Similarly, since lim b(g, y) is lower s.c. and g(x) =lim,.. b(g y)on X, B(g, y)
is lower s.c.

Let h be any fixed function in N and choose € C(Y) satisfying A(h, y)=
Y(y)= B(h,y)forall y €Y (this is possible since A (h, y) (upper s.c.)=B(h,y)
(lower s.c.), [5]).

Let M =MU{h}, F(h)= ¢ and define

a&&y)=gg{vayrﬂf—gm, bm&y)=gngUXy%HV-gH}

We will now prove the following:

(b) The map F: M,— C(Y) is an isometry and for A, ={x}, s =1 condition
(it), (iii) is satisfied for all g € N.

Once (b) is proved (a) follows by iterating the procedure with a dense sequence
{h,} in N.

In order to prove (b) we first show that a(g, yo) éﬁr?xy_,yu a(g,y) and
lim,_,, b(g, y)=b(g yo) for all y EY and g € C(X).

Given £ >0 we can find f € M such that a(g, yo) < F(f)(yo)—|lf — gll+ £/2
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and & > O such that | F(f)(y)— F(f)(yo)| < €/2 for all y € B(y,, 8). It follows that

a(g yo) <F()(y)—Ilf — gll+ F(f}(yo) — F(N)(y)
<F(H)(y)-Ilf—gll+e
=a(gy)te on B(y,, 8).

Thus a(g, yo) = lim,_.,, a(g, y). Similarly we get lim, ., b(g, y) = b(g, yo).
Let f€ M. For y,€ Y\ X we have

F(f)(yo) = ¥(y0) = F(f)(yo) = lim a(h, y) = F(f)(yo)— a(h, yo) <[ = |

and

(yo) = F(f)(yo) = lim b(h, y) = F(f)(yo) = b(h, yo) = F(f)(yo) =[lf — R.

For x € X we have by definition ¢(x)= h(x) and by condition (ii) F(f)(x)=
f(x). Hence |F(f)— ¢ =||f — k| for all fE M.
It remains to prove that condition (iii) is satisfied for all g € N. Clearly

lim a\(g, y) =supf{lim a(g, y), ¥(y)— [ h — glI}

and

lim by(g, y) = inf{lim b(g, y), ¥(y) + || — glI}-
Now, for g € N and x € X we have

',—ii?} a(g y)=g(x)=lim b(g,y).

Thus we have

lim a:(a, y) = suplg(x), h(x) [k —gll} = g(x)
and

lim bi(g, y) 2 inf{g(x), h(x) +|[h - gll} = g(x).
For y € Y\ X we need to prove

lima(g y)=¢(y)+|h—gll and ¢(y)—|h—gll=limbi(g y).
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Given £ >0 we can find f € M such that
a(g,y)—a(hy)=F()(y)-|lf —gll+e—a(hy)
SFOO)-If—gl+e-F(H)y)+If—hll
=|g—hll+e

Hence

H(a(g,)’)_a(h,)’))§“h“g“

Similarly

lim(b(h, y)— b(g y)=|h—g].

Therefore we have

lima(g y)—¢(y)=lima(g y)—lima(h y)=lim(a(g y)—a(h y)=|h —g|

and

¢(y)—lim b(g, y)=lim b(h, y)—lim b(g, y) =lim(b(h, y) ~ b(g, y ) =||h — g|.

Thus condition (iii) is satisfied.

This proves (b) and so the proof of (a) is complete.

We will now use (a) to prove the general thoerem. Let U A, = Z C Y. By
condition (i) we can define a linear isometry L: C(X)— C(Z) by L(f)(z)=
s(z)f(x) for z € A..

Now let F;: L(M)— C(Y) be defined by F,(L(f))= F(f). Clearly F, is an
isometry satisfying condition (i), (ii) with A, ={z} and s=1. Moreover,
condition (iii) is satisfied for all h € L(C(X)).

To see this, let h = L(g). Then we have

sup | {FLN)-ILH - L} =algy)

L(f)

and

inf {F(LUNY)~ILF)~ LI} =b(g y).

L(fYeL(M)

For z € A, and g € C(X) we have

lim a(g y)=s(z)g(x)= L(g)(z)=lim b(gy).

y—z
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Hence condition (iii) is satisfied for all h € L(C(X)) and with s = 1. Thus we can
find an isometrical extension F, of F, to L(C(X)). Clearly F, ¢ L is an isometrical
extension of F to C(X) and the proof of Theorem 1.3 is complete.

REMARK 1. One can easily see that the general case can be carried out
directly in almost the same way as we carried out (a) by defining

s(y)g(x), Yy€EA.
Agy)=

lima(g y), otherwise

and similarly for B(g, y). However the structure of the general isometry may
appear in a more clear way when carrying out (a) first.

REMARK 2. If we let ¢, replace C(X) and C(Y)in Theorem 1.3 and exclude
the requirement of s to be continuous we have an extension theorem for
isometries from subsets of c.. In the proof we then let A, ={0} and s(0)=1. In
this case we have

lim a(g, y) = a(g, yo) = b(g, yo) = lim b(g, y) for all y, #0

y=>yo y—yo

and since a(g, y) = s(v)g{(yo) = b(g, yo) for y, € A, the condition (iii) reduces to:

Forallge C(X) wehave lima(g y)=0=<lim b(g,y).
y—0 P
2. Almost isometries from the unit ball of C(X) into the unit ball of C(Y)

Let X, Y be compact metric spaces with metrics d, and d, and let Br (C(X))
denote the ball in C(K) with center () and radius R.

THEOREM 2.1. Let F: B,(C(X))— B(C(Y)) with F(0)=0 and
A-e)lf -gl=IF(H-F@@ll=1+e)lf—gll  forall f, g € B(C(X)).
Then there exists an isometry G: B _s5,.,(C(X))— B{(C(Y)) such that
IG() = F(Hl<8:e)  on Biose(C(X))
where 8,(£)—0 and 8.(¢)—0 when ¢—0.

The proof is based on the following Proposition. Let a be fixed, 16¢/(1+£) <
a=1.
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PropoSITION.  There is a closed set K C Y, a continuous onto map ¢: K- X
and a continuous sign function s: K—{—1,1} with the following property:

If i, > € Bi-ap(C(X)) and || fi— foll = | fu(x0) — folx0)| then there is yo € ¢~ (xo)
so that

|F(£)(yo)— (1 + €)s(yo) fi(xo)[=3e,  i=1,2.

DErINITION 1. Given x, € X we say that f € C(X) is a tentfunction at x, if
for some 6 >0

-4 ’g”" x € B(x0, 8),

’

fx)=
0, otherwise.

For the proof of the Proposition we need some lemmas.

Lemma 2.1, Let {f.} C C(X), {x.} C X, {y.} C Y be sequences with y, — y and
f. a tentfunction at x, with supp(f,) = B(x., 8.) where 8, —0 when n — x_ If for
all n

1) 2a(1+&e)—4e =|F(af.)(y.)— F(— af.)(y.)]
then lim, . x, exists.

DerINITION 2. We say that y € A, if there exist sequences {f.}, {x.}, {y.}
satisfying the conditions in Lemma 2.1 with x =limx, and y =lim y,.

Proor oF LEmma 2.1. Clearly {x.} contains a convergent subsequence, say
{x,}, with lim x,. = x. Assume that {x,} is not convergent. Then for some d >0
there exist, for every N, n = N such that d,(x,,x)=d. Let g € C(X) with
0=g=a/2, g=a/2 on B(x,d/4) and with supp(g) C B(x, d/2).

Now, for every N it is possibie to find n, n’ 2 N such that supp(f.) C B(x, d/4)
and supp(f,) N B(x, d/2) =D. Then we have ||g —af.||=a/2, | g + af.| =3a/2
and ||g = af, || = a.

Therefore we get

F(af)(y) =5 (1+€) S F(g)(y) = F(afu)(m) +5 (L + &),

F(— af) () =2 (1+ ) S F(@) () = F(— af,)(5) + 35 (1 + &),

F(xaf)(y.)—a(l+ )= F(@)(y.) = F(x af.)(y.) +a(l +¢).
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By hypothesis of F and by (I) we have for all k
a(l+¢)—4e = Faf)(y)= a(l + &),
—a(l+ &)= F(— af)(y) = —a(l+£) +4e,
or
—a(l+e)S Faf) ()= —a(l+e)+4e,
a(l+e)—4e = F(— af )(y) = a(l +¢).
We obtain that
—4¢ (f) §(1+s)§F(g)(y,.r)§(t) S(1+e)+4e
and

—de = F(g)(y.)=4e.

Thus we have
[F(@)(y)|Z5 (1+€)—4e and |F(g)(y.)|=4e.

Since F(g)€ C(Y), 16¢/(1 + £)< a fixed and dxy,, y.)—> 0 when n, n' — = this
clearly gives a contradiction for n, n' large enough. Hence {x, } is convergent.

As a consequence of Lemma 2.1 we have the following.
LemMA 2.2. The sets A, are pairwise disjoint.

Proor. Let yE A, NA,, and let {f..}, {x.} and {y.} be corresponding
sequences in the definition of A ., i =1,2. Since lim y,, = lim y.. the sequences
{Fis, far, fizs oo, - 3 {X1i, X1, Xu2, .. .} @and {y11, ya1, Y12, . . .} Clearly satisfy the condi-
tions in Lemma 2.1. Hence {x:, X2, X12,...} is convergent and x; =limx,, =
lim x,, = x,.

Lemma 23. IfywE€ A, and y.— y then xy, > x and y € A,.

PrOOF. Let {fi}, {x.} and {y..} correspond to y. in the definition of A ,,. For
every k we can find n(k) such that di(X .y, X ) < 1/k, dao(Yiny, o)< 1/k and
supp{fin) C B(xi, 1/k).

Then the sequences {fin)}, {Xinio} and {yin)} clearly satisfy the conditions in
Lemma 2.1.

Thus 3 lim, .. Xgn, = X and limy.x Yinw) = y € A..
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LEMMA 2.4. Let y EA, and let {f.}, {x.} and {y.} be any collection of
sequences satisfying the conditions in Lemma 2.1. Then

lim sign F(af.)(y.) =sign F (g) (y).

Proor. For each 'y, we have sign(af,)(y.)=sign(a/2)(y.) and
{F(a/2)(y.)| > 4&. Indeed, by definition we have

|Flafu)(y)]22(1+ €)a —4e —|F(— af.)(y:)| Z (1 + £)a —4¢

and
F(af) ()= (1+ ) S= F(2) () = F@f) o)+ 1+ ) §
Hence
F(%) (y)=(1+ s)§—4e >4e  if F(af,)(y.)>0.
Similarly,

F(§> ()< —4e  if F(af,)(y.)<O0.
Thus sign F(a/2)(y) is well-defined and equal to lim,_...sign F(af,)(y.).

Proor ofF ProposiTion.  Let K = U A,, s(y)=sign F(a/2)(y) on K and let
¢: K— X be defined by ¢(y)=x for y € A,. By Lemmas 2.2 and 2.3 we see
that K is closed and s, ¢ is well-defined and continuous.

Let fi, f- € Bi_.p(C(X)) and let || f; — f2|| = | fi(x0) — f2(x0)|. In order to prove
that there is a y, € K with ¢(y,) = x, and

|F(f:)(yo) — (1 + €)s(yo) fi (x0)| = 3¢

we construct two sequences of functions in the following way.
Let d be such that | f.(x) — f, (xo)| = a on B(xo,d). For n =1,2,3,... we define

1__4___)nad, % X0 on B (xo ﬁ)
d > hn
pu(x) =
Er__]irzl {1=Ff(x0)+fi(x),1—a} otherwise

and
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1 4 2adi(x, xo) dx, Xy on B (xo, g)

g (x) =
max {=1—fi(xe)+fi(x),—1+a} otherwise.

Clearly, p.,q. € B{(C(X)) and we have
(*)

By continuity this is obvious on B(x,,d/n). For x& B(x,,d/n) we have
p.(x)— fi(x)=1-fi(xo) and if p,(x)=1— fi(xe)+ fi(x) then

filx) = pa(x)= —1+ fi(xo) = f(x0)— 1.
If p.(x)=1—a then

lf=pl—>1-f(x0) and [f—gq.ll>1+f(x) whenn—o.

filx)-p.(x)=1-a2-(1—-a)=1- (1 —g) =1-fu(xo):
Finally, if p.(x)=1— fi{xo)+ fo(x) then fo(x)— fi(x) = f2(x0) — fi(xe). Since

|fi(x) = f2(0) | =] filxa) = fo(x0)]
this implies
fox) = fi(x) = fax0) = fix0) <O or  fi(x)— fo(x) = fo(x0) = filx0).
Hence fi{x)—p,(x)=flxs)—1=1~—fi(x) or
filx) = pa(x) = fi(x) = fax) = 1+ fox0) = — 1+ 2fo(x0) — f1(x0) = 1 — fi(x0).

Thus we have |p, (x)— fi(x)| =1— f(xo) on X\ B(x0,d/n).

Similarly, g, (x)— fi(x)}| =1+ f(xo) on X\ B(x,, d/n).

Since ||p. — q.||=2 there exist y, for every n such that

(*+) 2(1 =€) =[F(p.)(3.) — F(g.)(ya)[ =21 + ).

The sequence {y.} contains a convergent subsequence, say y, — y,. We shall now
prove that y, € A, = ¢ '(x,).
Consider the functions r, defined by

- il xo) 7 onB (XO, g) ,
r.(x) =

0 otherwise.
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Since r, is a tentfunction at xo, d/n —0 and y, — y, we have y, € ¢ '(x,) if we
can prove that 2a(1+¢e)—|F(ar.)(y.)— F(— ar.)(y.)| = 4e.

Assume that F(p.)(y.)= F(q.)(y.). From (**) we obtain 2(1—¢)=
F(p.)(y.)~ F(q.)(y.) and since ||p. —ar. || =g, + ar.|| =1~ a we get

—|F(ar.)(y.) = F(= ar,)(y.)| = F(— ar.)(y.) — F(ar,)(y.)
= F(=ar.)(ya) = F(g:)(y.) + F(p.)(y.)
= F(aur)(y2) + F(4:)(y.) = F(pa ) (y4)
s(+e)l-a)+(1+e)l—a)-2(1+¢)
= —2a(1+¢)+4e.

Thus )/'0 e ¢71(X()).
The case F(p.)(y»)= F(q.)(y.) is proved similarly. Since | F(p,)(y.)| =1 and
|F(g.)(y.)| =1, (+*) implies

1-2e =F(p.)(y) =1,
—1=F(q.)(y.)= —1+2¢,
or
—1=F(p.)(y.)= —1+2¢,
1-2¢ = F(g.)(ya) = 1.

One can easily check that sign F(p.)(y.) = sign F(ar. )(y.) so for n large enough
we have sign F(p,)(y.) = s(yo). Hence for n large enough those inequalities can
be rewritten in the form

1-2¢ = s(yo)F(p.)(y.) =1,
~1=5(y0)F(g:)(ya) = —1+2e.
From (*) we obtain
—e(n, f)+ F(p.)(y.) — (1 + &)1~ fi(xo)) = F(f)(y.)
=(1+e)A—fi(xo)) + F(p)(y.) + £(n, f),
—e(n, fi)+ F(q.)(y.) — (1 + &) (1 + fi (xo)) = F(f:)(ya)
=(1+e)A+fi(x)+ F(ga)(y) + £(n f),

where e(n, f;)—0 when n—>x.
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Hence for n large enough we have

—e(nf)—3e +(1+e)s(yo) i (x) = F(f)(y.) = (14 €)s(o) fi (xo0) + 3¢ +(n, f).

Letting n— o we obtain | F(f.)(yo) — (1 + &)s(yo) fi (xo)| =3¢ and the proof is
complete.

ProoF OF THEOREM 2.1. Let ¢ and s be as in the Proposition. Since
s: K—{—1,1} and K is closed we can find, by Urysohn’s lemma, a continuous
function §: Y —[—1,1] with § IK =s.

Now, let M,(X) be the unit ball of Radon measures on X endowed with the
weak*-topology. Define a set valued map on Y by

Y(y)={s(y)Ber)} it yeK
and

Y(y)=1{5(y)u; u probability measure € M,(X)} if yeY\K

Clearly ¢(y) is a closed and convex subset of M,(X) for all y € X. Furthermore,

one can easily check that the set {y € Y; ¢(y)N G#J} is open in Y for every

open set G in M,(X). Hence, using Michael’s selection theorem ([4] p. 169) we

can find a continuous map ¢: Y — M;(X) such that ¢(y)=s(y)8s, on K.
Now given any y € Y and f € B,_,,(C(K)) we define

G =sup {int {e)() 7oz FO)+36)] 1= F ) -30)]

We observe that [F(f)(y)—(1+¢)e(y)(f)|=3e if and only if G(f)(y)=
e(Y)(f).

Since ¢ is weak*-continuous we have ¢(y)(f) continuous on Y and hence
G e C(Y).

Furthermore we have

IF()(y)= G =TF()(y) = e ()]
=|F(A(y) =1+ )e) D] +ele ()]

=4¢
or
FOY0)= GO = | @) -T2 () 3¢)

1
1+¢
4e.

=

([eF(f)(y)] +3e)

A
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Thus | F(f)— G(f)||=4¢ on B_.p(C(X)).
We now prove that G is an isometry and to do this we first show that

G -GRWI=lfi-f] VyeY
This clearly holds if G(f)(y)=¢(y)(f), i=1,2 or

GH =117 (FOO) Gy3%). =12
If

Gy =177 (F(f)(y)=3e) and G(f)(y)=17 (F()(y)+3e)

then by definition

Gy Ze()(f) and G(L)(Y)=e(y)(f).
Hence G(f2)(y)= G(f)(y)= e(y)(f:~ f)=[fi— f[ and

G(f(y) = G(I) =1 F(I)~ FE) ~6e)=1fi - £l

If
G =e(() and G =137 FE)(y)-3¢)

then

G(f)(Y)— G @)= ()~ e(Y)(f):

Furthermore, we have

(1+e)e(y)(f)—3e SF(f)(y) = (L + e)e(y)(fi) + 3¢

and

F(f)(y) -+ e)lfi - £l = F(R)y) = F(R)(y)+ A+ o)lifi = £l

Using the right side of those inequalities we get

)(y)—3e)—e(F=(fi— £l

Finally, if we use the left side we obtain a proof for the remaining case,

G(f)(y)=e()(f) and G(f)(y) =73, (F(R)(y)+3e).
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Hence | G(fi)— G(f)=]f.— £l
Now if [|fi = f2]| = | fi(xo) — f2(x0)|, then by the Proposition we can find a point
Yo € ¢ '(xo) such that

3e Z|F(f,)(yo) — (1 + &)s(yo) f; (xo)| = | F(f; ) (yo) — (1 + &) (yo) (f))].
Thus G(f)(yo) = @(ya)(f;) = s(yo)f; (x0) s0 we have
||G(f1)— Gz |s(y(,)(f1(x0)—f2(x0))| = ||fl ~fl.

Since we may choose a = 16¢, 8,(¢) = a/2 and 8,(¢) = 4¢ the proof of Theorem
2.1 is complete.

ReMARrk. With some modifications of the proof we see that Theorem 2.1 is
also valid if we let ¢, replace C(X) and C(Y).

However, from the proof we cannot draw any conclusion whether Theorem
2.1 is valid or not in the complex case. For example, we have nothing
corresponding to the auxiliary functions p,., g. in this case.
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